
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:817–824
Published online 1 February 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.887
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SUMMARY

The aim of this paper is to present a numerical scheme to simulate unsteady, one-dimensional �ows in
open channels with arbitrary cross-section. This scheme is fully conservative of volume and momentum
and preserves the non-negativity of the water depth. The �nite di�erence method derived is semi-implicit
in time and based on a space staggered grid. A high-resolution technique, the �ux limiter method, is
implemented to control the accuracy of the proposed scheme. Our purpose is to achieve the precision
and the stability of the method with respect to the regularity of the data. A few computational examples
on classical test cases are given to illustrate the properties of the present method in terms of stability,
accuracy and e�ciency. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unsteady, one-dimensional �ows in open channels or rivers are governed by the one-
dimensional Saint Venant equations, a particular case of the shallow water equations. These
equations are derived from the physical principles of conservation of mass and momentum
(see, e.g. References [1, 2]).
Assuming an arbitrary cross-section, these equations describe the �ow through the

cross-sectional averaged water velocity u(x; t) and the instantaneous water surface elevation
�(x; t) measured vertically from a reference datum. These two unknowns are related by the
following hyperbolic system of two partial di�erential equations:

At + qx = 0 (1)

qt + (uq)x + gA�x + �u = 0 (2)
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where A(x; �) is an arbitrary but prescribed function of space and water surface elevation
representing the cross-section area; � is a non-negative friction coe�cient; g is the gravity
acceleration; q=Au is the momentum.
In the current literature, several numerical techniques for solving Equations (1)–(2) are

known. These include the method of characteristics, explicit di�erence methods, fully implicit
methods, Godunov methods [3] and semi-implicit methods [4]. In particular, the method of
characteristics is very e�cient in the treatment of boundary conditions, but does not guarantee
volume and momentum conservation. The Godunov’s type methods (see, e.g. Reference [5])
instead, require the solution of local Riemann problems and, consequently, are very e�ective
on simple channel geometries with �at, horizontal bottom and rectangular cross-section. For
space varying bottom pro�les, however, the bottom slope appears as a source term that may
generate arti�cial �ows [5] unless speci�c treatments of the geometrical source terms are
implemented [6]. Moreover, Godunov’s type methods are explicit in time and, accordingly,
the allowed time step is restricted by a Courant, Friedrichs and Lewy (C.F.L.) stability
condition. Alternatively, semi-implicit methods (see, e.g. Reference [7]) can be unconditionally
stable and computationally e�cient. These methods, however, when they do not satisfy
momentum conservation, may produce incorrect results if applied to extreme problems having
a discontinuous solution. The semi-implicit method recently presented by Stelling in
Reference [8] combines the e�ciency of staggered grids with conservation properties and
can be applied to problems including rapidly varying �ows. This method, however, is suitable
only for rectangular channels. Its formulation is quite complicated and has to switch between
momentum and energy head conservation depending on local �ow condition (see Reference [8]
for details). A semi-implicit method that conserves the �uid volume when applied to channels
with arbitrary cross-sections was presented in Reference [2].
In the present paper, a numerical technique to solve Equations (1)–(2) is derived, discussed

and applied. This technique is fully conservative, satis�es a correct momentum balance near
large gradients and, under a suitable constraint on the time interval, ensures the non-negativity
of the water volume, so allowing a correct solution of problems presenting �ooding and drying.
A proper semi-implicit discretization leads to a scheme that is relatively simple and highly
accurate, even if the C.F.L. condition is violated.
This paper is organized in 8 sections. From the second to the sixth, the proposed numerical

technique is described. In Section 7, a few computational examples on the classical dam break
and hydraulic jump tests are given to illustrate some properties of the present method.

2. SEMI-IMPLICIT FORM AND NOTATION

In order to obtain an e�cient numerical method that does not ‘su�er’ from stability problems,
some terms in the governing equations are discretized implicitly. The determination of the
speci�c form of the semi-implicit discretization follows directly from the analysis of the
hyperbolic system (1)–(2) and from the study of the C.F.L. stability condition [4].
Hence, in the momentum equation, the free surface slope is discretized with the � method

and the friction term is taken implicitly [7]. In the continuity equation the � method is chosen
for the spatial derivative. The remaining terms are discretized explicitly [9, 10]. For stability
reasons [7], � is considered in [1=2; 1].
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Equations (1) and (2) are discretized in the spatial interval [0; L] on a space staggered grid
whose nodes are denoted by xi and xi+1=2. The discrete velocity ui+1=2 (or the momentum qi+1=2)
is de�ned at half integer nodes and the discrete surface elevation �i, assumed to be constant
in the interval

[
xi−1=2; xi+1=2

]
, is de�ned at integer nodes. The grid intervals are denoted by

�xi= xi+1=2 − xi−1=2 and �xi+1=2 = (�xi+1 +�xi)=2. The time interval is taken to be �t.

3. A CONSERVATIVE SCHEME FOR THE CONTINUITY EQUATION

The continuity Equation (1) expresses the physical law of conservation of volume and it is
discretized by a �nite volume method in space and by the � method in time [2]. Speci�cally,
from the integration in space of (1) over the interval

[
xi−1=2; xi+1=2

]
and from the discretization

in time, it follows:

Vi
(
�n+1i

)
=Vi (�ni )−�t

[
qn+�i+1=2 − qn+�i−1=2

]
(3)

where the �uid volume Vi (�i) =
∫ xi+1=2
xi−1=2

A dx is, in general, a non-linear function of � and

qn+�= �qn+1 + (1− �)qn.
Equation (3) obviously expresses a discrete conservation of �uid volume.
The particular attention given here to volume conservation is justi�ed by the importance of

this conservation when the channel has a non-rectangular cross-section. In this case, traditional
numerical methods (and even the Godunov’s type methods) apply a linearization technique
to the non-linear function V in Equation (3). Speci�cally,

Vi
(
�n+1i

) ≈Vi (�ni ) +
@Vi (�ni )
@�

(
�n+1i − �ni

)
(4)

where @Vi (�ni ) =@� represents the surface area between xi−1=2 and xi+1=2.
Substitution of (4) into (3) yields

@Vi (�ni )
@�

(
�n+1i − �ni

)
+�t

[
qn+�i+1=2 − qn+�i−1=2

]
=0 (5)

where the term @Vi (�ni ) =@�
(
�n+1i − �ni

)
is no longer the volume variation unless @Vi=@� is a

constant. This is the case, e.g. for channels with rectangular cross-section. In general, however,
the linearized equation (5) or similar linearizations, will not guarantee volume conservation
and an arti�cial loss or creation of mass may result.
From Equation (3), one can derive a condition for the non-negativity of the water

volume, i.e. [
qn+�i+1=2 − qn+�i−1=2

]
�t6Vi (�ni ) (6)

4. A CONSERVATIVE SCHEME FOR THE MOMENTUM EQUATION

Equation (2) is discretized with a conservative method in order to obtain a physically correct
solution also under extreme circumstances. Speci�cally, centred �nite di�erences are used for
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the integration in space of water surface elevation, while the semi-implicit method is used for
the time integration (see, e.g. References [2, 4, 7, 9]):

(
1 + �ni+1=2�t;

)
qn+1i+1=2 + gA

n
i+1=2��t

(
�n+1i+1 − �n+1i

)
�xi+1=2

=Fni+1=2 (7)

where

Fni+1=2 = q
n
i+1=2 −�t

[
(uq)ni+1 − (uq)ni

]
�xi+1=2

− gAni+1=2(1− �)�t
(
�ni+1 − �ni

)
�xi+1=2

(8)

is a �nite di�erence operator including the explicit discretizations of the advective and the
free surface slope terms; Ani+1=2 =A

(
xi+1=2;

(
�ni+1 + �

n
i

)
=2

)
.

Here, it is worth noting that in case of a frictionless channel with rectangular cross-
section and �at bottom, one has A(x; �)=BH =B(h+ �), where B is the channel width and
h=constant is the channel depth when �=0. In this case, Equation (7) can be regarded as
being the semi-implicit time discretization of

dqi+1=2
dt

+
(uq)i+1 − (uq)i

�xi+1=2
= − gB (Hi+1 +Hi)

2
(Hi+1 −Hi)
�xi+1=2

(9)

or equivalently,

dqi+1=2
dt

+
(uq)i+1 − (uq)i

�xi+1=2
= − gB

2

(
H 2
i+1 −H 2

i

)
�xi+1=2

(10)

Interestingly enough, even though the given momentum Equation (2) is not written in
conservative form, the resulting Equation (10) represents the precise momentum conservation
because it is written in �ux form (see, e.g. Reference [8] for further details).
We shall then assume that the more general Equation (7) is conservative also in the more

general case of channels with arbitrary cross-section and with varying bottom slope.

5. THE SOLUTION ALGORITHM

At each time step Equations (3) and (7) form a system of non-linear equations with
unknowns qn+1i+1=2 and �

n+1
i over the entire computational mesh. This system can be reduced for

computational convenience to a smaller one in which �n+1i are the only unknowns. Speci�cally,
the expression for qn+1i±1=2 can be substituted from (7) into (3) to obtain

Vi
(
�n+1i

)
+ pni−1=2�

n+1
i−1 + d

n
i �

n+1
i + pni+1=2�

n+1
i+1 =f

n
i (11)

where pni±1=2, d
n
i and f

n
i are

pni±1=2 = − g (��t)2 Ani±1=2

�xi+1=2
(
1 + �ni+1=2�t

) ; dni = − pni+1=2 − pni−1=2
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fni = Vi (�
n
i )− (1− �)�t [qni+1=2 − qni−1=2

] − ��t

 Fni+1=2(
1 + �ni+1=2�t

) − Fni−1=2(
1 + �ni−1=2�t

)



For every time step n, system (11) can be written in a more compact matrix notation, as
follows:

V(�) +M�= f (12)

where �=(�1; �2; : : : ; �N )T is the vector of the unknowns,

V(�)=




V1 (�1)

V2 (�2)

· · ·
VN (�N )



; M=




d1 p 3
2

: : : 0

p 3
2

. . . . . .
...

...
. . . . . . p

N− 1
2

0 · · · p
N− 1

2
dN



; f =




f1

f2

: : :

fN




(13)

System (11) is mildly non-linear. The coe�cient matrix M is symmetric, tridiagonal,
diagonally dominant with positive elements on the main diagonal and negative ones elsewhere.
Regarding the non-linear part, we assume that V is Lipschitz continuous, that is Vi is

Lipschitz continuous with constant Li for each i=1; : : : ; N so that L=diag (L1; L2; : : : ; LN ) is
the Lipschitz constant of V.
This is a realistic assumption, because it means that the surface area @Vi=@� is always

bounded for every � and thus the �ow is always assumed to be con�ned within the channel
banks.
It is known that under this hypothesis, the existence and the uniqueness of the solution of

system (12) is assured [11] and can be computed by using, for example, the iterative method
presented in Reference [2].
Once the solution for �n+1 has been determined, qn+1 can be easily computed by substitution

�n+1 in (7).

6. ADVECTIVE TERMS

The value of uq at the integer node i, as required by F , may be chosen with an upwind rule
as follows:

(uq)i=



ui−1=2qi−1=2 if

ui−1=2 + ui+1=2
2

¿0

ui+1=2qi+1=2 if
ui−1=2 + ui+1=2

2
¡ 0

(14)

With this choice, the resulting numerical scheme is only �rst-order accurate. In general,
all �rst-order schemes su�er from numerical dissipation and all second-order schemes su�er
from arti�cial dispersion, which creates oscillations around discontinuities.
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In order to improve the accuracy without running into stability problems but leading it to
satisfy the TVD property [5], the �ux limiter method has been used. This high-order resolution
method switches between a second-order approximation when the data are su�ciently smooth
and a �rst-order approximation near a discontinuity.
The �ux limiter method has been implemented in the approximation of the advective term

in the momentum Equation (7). Starting from the proposed discretization, the �ux limiter
approach adds to the numerical �ux (uq)i a correction term limited by a �ux limiter function
� that depends on the regularity of the data. Thus, the approximation of the advective term
can be rewritten as

(uq)x ≈
[
(uq)i+1 + 1

2 �
(
ri+ 3

2

)
�(uq)i+3=2

]
−

[
(uq)i + 1

2 �
(
ri+ 1

2

)
�(uq)i+1=2

]
�xi+1=2

(15)

where (uq)i is given by (14), the corrective term �(uq)i+1=2 is taken to be

�(uq)i+1=2 =



(uq)i+1=2 − (uq)i−1=2 if

ui+1=2 + ui−1=2
2

¿0

(uq)i+3=2 − (uq)i+1=2 if
ui+1=2 + ui−1=2

2
¡ 0

(16)

and the smoothness of the data in xi+1=2 is de�ned as

ri+1=2 =



ui−1=2 − ui−3=2
ui+1=2 − ui−1=2 if

ui+1=2 + ui−1=2
2

¿0

ui+1=2 − ui−1=2
ui+3=2 − ui+1=2 if

ui+1=2 + ui+1=2
2

¡ 0
(17)

The �ux limiting function � can be chosen in several ways (see, e.g. Reference [12] for
details).

7. NUMERICAL RESULTS

The �rst test problem is the well-known dam break problem in a 1m long rectangular channel
over a frictionless dry bed. The initial conditions are

u(x; 0)=0; �(x; 0)=

{
�l if 06x6 1

2

�r if 1
2 ¡ x61

(18)

The physical and computational parameters are �l=1 m, �r =0 m, �=0, g=1 m=s
2,

�x=0:005 m, �=1 and �t=10−3 s. In this example, �(x; t) also represents the total water
depth which is initially zero for 1

26x61.
Figure 1(a) shows the numerical results and the analytical solution (plotted with a dotted

line) at time T =0:15 s. These results compare favourably with those obtained from high-
order Godunov’s type methods (see, e.g. Reference [5]).
The second test problem is a dam break problem in a channel with �at bottom and triangular

section of area A=10�2. The initial conditions are the same as in (18) with �l=1 m and
�r =0:1 m. The computational parameters are set as in the �rst example except for �=0:5.
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Figure 1. (a) Dam break over a dry bed. (b) Dam break over a wet bed. (c) Hydraulic jump.

The results obtained at time T =0:3 s are plotted in Figure 1(b). This example shows
the applicability of the present algorithm to a dam break problem where precise volume
conservation is essential and not easily obtained by traditional linear schemes.
The last example is a hydraulic jump test problem in a 100 m long rectangular channel.

In the middle of the channel, there is a sill with a crest of 1 m height and 10 m length and
the tangent of slopes at both sides is 0.2. There are two open boundaries, the in�ow and the
out�ow, where a discharge of 1m3=s and a water depth of 1m, respectively, are imposed [8].
The discretization parameters are �=0, g=9:81m=s2, �x=0:5m, �=1 and �t=10−3 s. This
is a severe test case that involves a problem with a varying bottom pro�le.
The steady state of the free surface of this phenomenon is plotted in Figure 1(c). These

results also compare favourably with those obtained by Stelling and Duinmeijer [8].
Comparisons with �rst-order methods show that the present results are de�nitely sharper.

8. CONCLUSIONS

A fully conservative semi-implicit �nite di�erence method to solve the Saint Venant equations
has been presented, discussed and applied. It is simple, volume and momentum conservative
and preserves the non-negativity of the water volume. A �ux limiter technique has been
implemented to deal with steep gradients like the ones that are found in dam break problems.
Some numerical results are discussed. The extension of this method to two spatial dimensions
is left for a future work.
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